Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739539

RESUMO

In recent years, graphitic carbon nitride (g-C3N4) has attracted considerable attention because it includes earth-abundant carbon and nitrogen elements and exhibits good chemical and thermal stability owing to the strong covalent interaction in its conjugated layer structure. However, bulk g-C3N4 has some disadvantages of low specific surface area, poor light absorption, rapid recombination of photogenerated charge carriers, and insufficient active sites, which hinder its practical applications. In this study, we design and synthesize potassium single-atom (K SAs)-doped g-C3N4 porous nanosheets (CM-KX, where X represents the mass of KHP added) via supramolecular self-assembling and chemical cross-linking copolymerization strategies. The results show that the utilization of supramolecules as precursors can produce g-C3N4 nanosheets with reduced thickness, increased surface area, and abundant mesopores. In addition, the intercalation of K atoms within the g-C3N4 nitrogen pots through the formation of K-N bonds results in the reduction of the band gap and expansion of the visible-light absorption range. The optimized K-doped CM-K12 nanosheets achieve a specific surface area of 127 m2 g-1, which is 11.4 times larger than that of the pristine g-C3N4 nanosheets. Furthermore, the optimal CM-K12 sample exhibits the maximum H2 production rate of 127.78 µmol h-1 under visible light (λ ≥ 420 nm), which is nearly 23 times higher than that of bare g-C3N4. This significant improvement of photocatalytic activity is attributed to the synergistic effects of the mesoporous structure and K SAs doping, which effectively increase the specific surface area, improve the visible-light absorption capacity, and facilitate the separation and transfer of photogenerated electron-hole pairs. Besides, the optimal sample shows good chemical stability for 20 h in the recycling experiments. Density functional theory calculations confirm that the introduction of K SAs significantly boosts the adsorption energy for water and decreases the activation energy barrier for the reduction of water to hydrogen.

2.
J Colloid Interface Sci ; 599: 219-226, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33945969

RESUMO

Stable and recyclable catalysts are crucial to the peroxymonosulfate (PMS) based advanced oxidation process (AOPs) for wastewater treatment. Herein, nitrogen-rich carbon wrapped Fe3C (Fe3C@CN) on carbon felt (CF) substrate was synthesized by using Prussian blue (PB) loaded CF as the precursors. The obtained Fe3C@CN/CF catalyst was applied for degradation of bisphenol A (BPA) via the heterogeneous catalytic activation of PMS. Results showed that ~91.7%, 95.2%, 98.1% and 99.1% of BPA (20 mg/L) were eliminated in the Fe3C@CN/CF + PMS system within 4, 10, 20 and 30 min, respectively. The fast degradation kinetics is attributed to the production of abundant reactive species (OH, SO4- and 1O2) in the Fe3C@CN/CF + PMS system, as demonstrated by the electron paramagnetic resonance spectroscopy and quench experiments. The Fe3C@CN/CF catalyst was stable and can be easily recycled by using an external magnet. The results indicated that the nanoconfined Fe3C endowed Fe3C@CN/CF with high stability and magnetic property and enabled the efficient electron transfer for PMS activation. This study provides a cost-effective approach for the fabrication of stable and recyclable Fe3C@CN/CF catalyst, and shed a new light on the rational design of multifunctional catalyst for advanced water remediation.

3.
Nanotechnology ; 31(16): 165401, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-31860891

RESUMO

The development of low-cost, highly efficient and durable non-precious-metal (NPM) electrocatalysts for the oxygen reduction reaction (ORR) is of great significance. Herein, we report an ingenious two-step strategy for the fabrication of NPM electrocatalysts containing multifarious cobalt species embedded in nitrogen-rich nanocarbons (Co-N-C). Firstly, Co ions were fixed by coordination with 1H-Imidazo[4,5-f][1,10]phenanthroline (Hip), and secondly the Co-Hip precursor with abundant Co, C and N sources was subjected to calcination at various temperatures (700-900 °C). The obtained Co-N-C catalysts exhibited excellent activity in terms of the ORR in alkaline conditions, with a half-wave potential of 0.82 eV versus the reversible hydrogen electrode, which is close to that of commercial Pt/C. Moreover, the Co-N-C exhibited an unexpected catalytic activity with long-term stability and immunity to methanol which is better than commercial Pt/C catalyst, suggesting that Co-N-C with dual active sites of the single-atom Co sites (Co-N4) and Co2N can be a promising alternative to replace Pt-based electrocatalysts in fuel cells. This work can provide a new route to designing promising catalysts with dual active sites for ORR.

4.
Nanoscale ; 10(34): 16145-16152, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30118114

RESUMO

The development of low-cost and highly efficient single-atom oxygen reduction catalysts to replace platinum for fuel cells and metal-air cells is highly desirable but remains challenging. Herein, we report the fabrication of isolated single-atom Fe anchored on porous nitrogen-doped carbon from the pyrolysis of a well-designed solely Fe-tetrapyridophenazine coordination complex. The N-rich bridging ligand, tetrapyridophenazine (tpphz) is first employed as a spatial isolation agent of Fe that suppresses its aggregation during high temperature pyrolysis, resulting in highly reactive and stable single-atom Fe ORR catalysts. The catalyst shows remarkable ORR activity with a half-wave potential of 0.863 V versus the reversible hydrogen electrode (RHE) (21 mV more positive than that of commercial 20 wt% Pt/C) and excellent durability in 0.1 M KOH. Whereas in acidic media, the Fe single atoms also demonstrate ORR activity comparable to and stability much higher than those of Pt/C. Notably, Zn-air cells made using the as-prepared catalyst as the cathode provide a high open circuit voltage (1.53 V) and gravimetric energy density (947 W h kg-1), which are higher than commercial Pt/C based Zn-air cells (1.50 V and 828 W h kg-1). This work will open a new avenue to design single-atom catalysts for clean renewable energy storage and conversion devices.

5.
RSC Adv ; 8(31): 17504-17510, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35539256

RESUMO

The design and development of highly efficient and long lifetime Pd-based catalysts for hydrogenation reactions have attracted significant research interest over the past few decades. Rational selection of supports for Pd loadings with strong metal-support interaction (SMSI) is beneficial for boosting catalytic activity and stability. In this context, we have developed a facile approach for uniformly immobilizing ultra-small Pd nanoparticles (NPs) with a clean surface on a Pr6O11 support by a hydrogen thermal reduction method. The hydrogenations of p-nitrophenol and styrene are used as model reactions to evaluate the catalytic efficiency. The results show highly efficient styrene hydrogenation performance under 1 atm H2 at room temperature with a TOF value as high as 8957.7 h-1, and the rate constant value of p-nitrophenol reduction is 0.0191 s-1. Strong metal-support interaction and good dispersion of Pd nanoparticles, as demonstrated by XPS and HRTEM results, contribute to the excellent hydrogenation performance. Electron paramagnetic resonance (EPR) results suggest the presence of oxygen vacancies in the support, which serve as electron donors and enhance the adsorption and activation of reactants and subsequent conversion into products. Moreover, the catalyst can be recovered and reused up to 10 consecutive cycles without marked loss of activity. Overall, our results indicate that oxygen-deficient Pr6O11 nanorods (NRs) not only play a role as support but also work as the promoter to substantially boost the catalytic activities for organic transformations, therefore, providing a novel strategy to develop other high-performance nanostructured catalysts for environmental sustainability.

6.
Nanoscale ; 9(36): 13800-13807, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28890973

RESUMO

Heterogeneous catalytic hydrogenation reactions are of great importance to the petrochemical industry and fine chemical synthesis. Herein, we present the first example of gadolinium hydroxide (Gd(OH)3) nanorods as a support for loading ultra-small Pd nanoparticles for hydrogenation reactions. Gd(OH)3 possesses a large number of hydroxyl groups on the surface, which act as an ideal support for good dispersion of Pd nanoparticles. Gd(OH)3 nanorods are prepared by hydrothermal treatment, and Pd/Gd(OH)3 catalyst with a low loading of 0.95 wt% Pd is obtained by photochemical deposition. The catalytic hydrogenation of p-nitrophenol (4-NP) to p-aminophenol (4-AP) and styrene to ethylbenzene is performed as a model reaction. The obtained Pd/Gd(OH)3 catalyst displays excellent activity as compared to other reported heterogeneous catalysts. The rate constant of 4-NP reduction is measured to be 0.047 s-1 and the Pd/Gd(OH)3 nanocatalyst shows no marked loss of activity even after 10 consecutive cycles. Additionally, the hydrogenation of styrene to ethylbenzene over Pd/Gd(OH)3 nanorods exhibits a turnover frequency (TOF) as high as 6159 h-1 with 100% selectivity. Moreover, the catalyst can be recovered by centrifugation and recycled for up to 5 consecutive cycles without obvious loss of activity. Our results indicate that Gd(OH)3 nanorods act as a promoter to enhance the catalytic activity by providing a synergistic effect from the strong metal support interaction and the large surface area for high dispersion of small sized Pd nanoparticles enriched with hydroxyl groups on the surface. The high performance of Pd/Gd(OH)3 in heterogeneous catalysis offers a new, efficient and facile strategy to explore other metal hydroxides or oxides as supports for organic transformations.

7.
ACS Appl Mater Interfaces ; 9(34): 28627-28634, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28825790

RESUMO

Electrochemical water splitting is an important process to produce hydrogen and oxygen for energy storage and conversion devices. However, it is often restricted by the oxygen evolution reaction (OER) due to its sluggish kinetics. To overcome the problem, precious metal oxide-based electrocatalysts, such as RuO2 and IrO2, are widely used. The lack of availability and the high cost of precious metals compel researchers to find other resources for the development of cost-effective, environmentally friendly, earth-abundant, nonprecious electrocatalysts for OER. Such catalysts should have high OER performance and good stability in comparison to those of available commercial precious metal-based electrocatalysts. Herein, we report an inexpensive fabrication of bimetallic iron-nickel nanoparticles on FeNi-foil (FeNi4.34@FeNi-foil) as an integrated OER electrode using a one-step calcination process. FeNi4.34@FeNi-foil obtained at 900 °C shows superior OER activity in alkaline solution with an overpotential as low as 283 mV to achieve a current density of 10 mA cm-2 and a small Tafel slope of 53 mV dec-1. The high performance and durability of the as-prepared nonprecious metal electrode even exceeds those of the available commercial RuO2 and IrO2 catalysts, showing great potential in replacing the expensive noble metal-based electrocatalysts for OER.

8.
Small ; 13(18)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28296136

RESUMO

Efficient and durable oxygen evolution reaction (OER) catalysts are highly required for the cost-effective generation of clean energy from water splitting. For the first time, an integrated OER electrode based on one-step direct growth of metallic iron-nickel sulfide nanosheets on FeNi alloy foils (denoted as FeNi3 S2 /FeNi) is reported, and the origin of the enhanced OER activity is uncovered in combination with theoretical and experimental studies. The obtained FeNi3 S2 /FeNi electrode exhibits highly catalytic activity and long-term stability toward OER in strong alkaline solution, with a low overpotential of 282 mV at 10 mA cm-2 and a small Tafel slope of 54 mV dec-1 . The excellent activity and satisfactory stability suggest that the as-made electrode provides an attractive alternative to noble metal-based catalysts. Combined with density functional theory calculations, exceptional OER performance of FeNi3 S2 /FeNi results from a combination of efficient electron transfer properties, more active sites, the suitable O2 evolution kinetics and energetics benefited from Fe doping. This work not only simply constructs an excellent electrode for water oxidation, but also provides a deep understanding of the underlying nature of the enhanced OER performance, which may serve as a guide to develop highly effective and integrated OER electrodes for water splitting.

9.
ACS Appl Mater Interfaces ; 9(11): 9756-9762, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28244326

RESUMO

Metal/support nanocatalysts consisting of various metals and metal oxides not only retain the basic properties of each component but also exhibit higher catalytic activity due to their synergistic effects. Herein, we report the creation of a highly efficient, long-lasting, and magnetic recyclable catalyst, composed of magnetic nickel (Ni) nanoparticles (NPs), active Pd NPs, and oxygen-deficient CeO2-x support. These hybrid nanostructures composed of oxygen deficient CeO2-x and active metal nanoparticles could effectively facilitate diffusion of reactant molecules and active site exposure that can dramatically accelerate the reaction rate. Impressively, the rate constant k and k/m of 4-nitrophenol reduction over 61 wt % Ni-CeO2-x/0.1 wt % Pd catalyst are 0.0479 s-1 and 2.1 × 104 min-1 g-1, respectively, and the reaction conversion shows negligible decline even after 20 cycles. Meanwhile, the optimal 61 wt % Ni-CeO2-x/3 wt % Pd catalyst manifests remarkable catalytic activity toward styrene hydrogenation with a high TOF of 6827 molstyrene molPd-1 h-1 and a selective conversion of 100% to ethylbenzene even after eight cycles. The strong metal-support interaction (SMSI) between Ni NPs, Pd NPs, and oxygen-deficient CeO2-x support is beneficial for superior catalytic efficiency and stability toward hydrogenation of styrene and 4-nitrophenol. Moreover, Ni species could boost the catalytic activity of Pd due to their synergistic effect and strengthen the interaction between reactant and catalyst, which seems responsible for the great enhancement of catalytic activity. Our findings provide a new perspective to develop other high-performance and magnetically recoverable nanocatalysts, which would be widely applied to a variety of catalytic reactions.

10.
Chem Commun (Camb) ; 53(2): 360-363, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-27934992

RESUMO

We report a novel reversible color switching system based on one-pot hydrogenation/oxygenation reactions over Pd/CeO2-x catalysts and fast interconversion of thionine (TH+) and leuco thionine (LTH). Oxygen vacancies produced by Pd-catalyzed instant hydrogenation of CeO2 and strong metal-support interaction (SMSI) could lead to fast color switching.


Assuntos
Cor , Corantes/química , Oxigênio/química , Cério/química , Hidrogenação , Oxirredução , Paládio/química , Tamanho da Partícula , Fenotiazinas/química , Propriedades de Superfície
11.
ACS Appl Mater Interfaces ; 8(37): 24550-8, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27598838

RESUMO

In this work, we report the synthesis of Cd1-xZnxS zinc blende/wurtzite (ZB/WZ) heterophase nanojunctions with highly efficient charge separation by a solvothermal method in a mixed solution of diethylenetriamine (DETA) and distilled water. l-Cysteine was selected as a sulfur source and a protecting ligand for stabilization of the ZB/WZ homojunction. The optimal ternary chalcogenide Cd0.7Zn0.3S elongated nanocrystals (NCs) without any cocatalyst loading show very high visible light photocatalytic activity with H2 production efficiency of 3.13 mmol h(-1) and an apparent quantum efficiency of 65.7% at 420 nm. This is one of the best visible light photocatalysts ever reported for photocatalytic hydrogen production without any cocatalysts. The charge separation efficiency, having a critical role in enhancing photocatalytic activity for hydrogen production, was significantly improved. Highly efficient charge separation with a prolonged carrier lifetime is driven by the internal electrostatic field originating from the type-II staggered band alignment at the ZB/WZ junctions, as confirmed by steady and time-resolved photoluminescence spectra. Further, the strong binding between the l-cysteine ligand and Cd1-xZnxS elongated nanocrystals protects and stabilizes NCs; the l-cysteine ligand at the interface could trap holes from Cd1-xZnxS NCs, while photogenerated electrons transfer to Cd1-xZnxS catalytic sites for proton reduction. Our results demonstrate that Cd1-xZnxS ZB/WZ heterophase junctions stabilized by l-cysteine molecules can effectively separate charge carriers and achieve highly visible light photocatalytic hydrogen production. The present study provides a new insight into the design and fabrication of advanced materials with homojunction structures for photocatalytic applications and optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...